A Survey of the Vitali-hahn-saks Theorem with an Application in Probability Theory
ثبت نشده
چکیده
Introduced by Vitali(1907), Hahn(1922) and Saks(1933), the VitaliHahn-Saks theorem plays a vital role in measure theory in proving some weak convergence theorems. In this Toolbox Essay, we will first introduce the Nikodym theorem followed by a self-contained proof. Next, we state the Vitali-Hahn-Saks theorem and show by an example how this theorem can be used in probability theory. The benefit of this Toolbox Essay is that it can help probabilitists look into convergence problems from Vitali’s view. Our presentation here is based on James Brooks[1].
منابع مشابه
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملUnconditional convergence and the Vitali-Hahn-Saks theorem
© Mémoires de la S. M. F., 1972, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملLIMIT THEOREMS IN (l)-GROUPS WITH RESPECT TO (D)-CONVERGENCE
Some Schur, Vitali-Hahn-Saks and Nikodým convergence theorems for (l)-group-valued measures are given in the context of (D)-convergence. We consider both the σ-additive and the finitely additive case. Here the notions of strong boundedness, countable additivity and absolute continuity are formulated not necessarily with respect to a same regulator, while the pointwise convergence of the measure...
متن کاملOn finitely additive vector measures.
In this paper we extend the well-known Vitali-Hahn-Saks and Nikodým theorems for measures to finitely additive vector-valued set functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015